了解你要解决的问题的各种参数
人们会被他们不理解的东西吓倒,并倾向于避开它们。 你必须能够以非技术人员能够理解的方式交流技术术语和建模技术。如果你花时间构建了一个很棒的模型,你就应该花更多时间进行有效的沟通,这样人们才能认可你的努力! 数据科学和机器学习本质上是统计学的现代版本。首先通过学习统计,当涉及到学习机器学习的概念和算法时,你会有一个更容易的时间。 这可以用一个例子来解释。 在我的一个项目中,我必须开发一个模型来预测一个产品是否必须被RMA 。一开始我以为我的输入是所有的产品,这使得它几乎像一个异常检测问题。 只有在了解业务需求和模型如何使用之后,我才意识到模型的输入是发出RMA的所有产品(客户发送了关于产品问题的电子邮件)。这使数据更加平衡,节省了我很多时间 作为一名数据科学家,最大的好处之一就是你有很大的自主权。但是,如果你不愿意寻求他人的建议、帮助和反馈,这很容易成为一个弱点。
尽管数据科学具有一定的自主性,但它是一项团队运动。你必须接受来自多个涉众的建议和反馈,包括最终用户、领域专家、数据工程师等。
(编辑:四平站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |